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RELAXATION METHODS APPLIED TO
ENGINEERING PROBLEMS

VIIC. FREE TRANSVERSE VIBRATIONS OF MEMBRANES, WITH
AN APPLICATION (BY ANALOGY) TO TWO-DIMENSIONAL
OSCILLATIONS IN AN ELECTRO-MAGNETIC SYSTEM
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o By D. N. pe G. ALreN, L. Fox, H. Motz anp R. V. SoutaweLrL, F.R.S.
S .
O (Recewed 11 November 1941)

==
Ej 5 Membranes whether uniform or non-uniform in density are easily treated by a technique
TO similar to that of Part VIIB, and with an accuracy more than sufficient for practical purposes.
[ An equation of the same mathematical form governs certain practically-important types of

high-frequency electromagnetic oscillation, and here the illustrative example treated has
direct importance for design.

INTRODUCTORY

1. Part VI of this series extended the relaxation technique to determine characteristic
modes and frequencies of freely vibrating systems, Part VII B applied similar devices
to the problem of elastic stability for a flat plate sustaining forces in its plane*. With
slight modification the same methods can be employed to determine modes and
frequencies of flat plates executing free transverse vibrations, so this problem too may
be said to have been covered in the series. But no consideration has been given, as yet,
to the simpler problem of vibrating flexible membranes. (There can be no question
of elastic stability, since a membrane can sustain no thrust.)

Apart from some acoustical applications, little interest attaches to membrane
vibrations per se. But their governing equation in the case of uniform density, of the
form
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V24 Aw = 0 (V2E%+#’), (1)
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finds important applications in other fields: it is presented in the theory of convective
motion due to non-uniform heating (Pellew & Southwell 19406, §13), and it governs
certain types of high-frequency oscillation in electromagnetic systems. Recent develop-
ments in the technique of production and detection of ultra-short electromagnetic
waves have led to the use of hollow metal tubes and cavities as wave guides and reson-
ators; consequently importance attaches to the vibrations which can occur in such
cavities, and methods are required for calculating their natural modes and frequencies.
By orthodox methods it has so far only been possible to deal with very simply shaped
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* Parts VI and VII B are included in the references as Pellew & Southwell 19404, Christopherson,
Fox, Green, Shaw & Southwell 1945.
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METHODS APPLIED TO ENGINEERING PROBLEMS 489

cavities (e.g. parallelepipeds, cylinders and spheres), and for many practically im-
portant shapes only rough estimates are available. Unrestricted methods having an
accuracy (say) of 1 9, will thus have considerable value.

2. Relaxation methods were in fact based originally upon the ‘membrane analogy’
of the plane-potential problem, and their terminology reflects that circumstance. It
has therefore seemed appropriate in this paper to treat membrane vibrations as the
primary problem, and to bring electromagnetic oscillations under discussion by
analogy, notwithstanding that this inverts their order in respect of practical importance.
Accordingly Section I derives the governing equation for a membrane having any
specified distribution of density, and applies the relaxation technique to find, for a fixed
square boundary, the gravest normal mode and frequency. The exact solution is known
as regards a membrane of uniform density (Rayleigh 1926, § 197): Section I gives
approximate solutions obtained by L. F., for comparison, with a use of the technique
developed in Part VIIB. It also exemplifies the similar treatment of membranes non-
uniform in density, showing that the general case is little harder: here no exact solution
is available for comparison, but there is no reason to believe that the accuracy is less.
The customary boundary condition (of zero displacement) is imposed in every case.

3. The less usual condition of zero normal gradient of displacement is presented in the
convection problem mentioned earlier (§1), and both types of boundary condition can
arise in electromagnetic problems. This application was suggested by H. M., with
whom D. N. de G. A. has been associated in the attack by relaxation methods.
Section II explains the derivation from Maxwell’s equations of the governing equa-
tion (1), and briefly summarizes the numerical computations. The way is now open
for a more exhaustive treatment of electromagnetic problems by the technique which
this paper has explained and tested. ‘

It hardly needs to be stated that attention, in this paper, is confined to free vibrations
for the reason that forced oscillations, due to pressures of known distribution and fre-
quency, present a relatively easy problem, tractable by the same technique as applies
to cases of static loading. We have, moreover, confined attention here to gravest modes:
the determination of higher modes and frequencies, with a use of ‘conjugate relations’
to eliminate unwanted modes from the assumed solution, has been fully explained in
earlier publications (Part VI, §§ 14-19; Southwell 1940, Chap. vi).

I. ‘NORMAL’ FREE VIBRATIONS OF A UNIFORMLY TENSIONED MEMBRANE

The governing equations
4. This section relates to membranes stretched so as to have uniform tension (the
same in all directions), but not necessarily uniform in density. The governing equation
is easily obtained in the manner of Rayleigh 1926, Chap. 1x.*

* Rayleigh’s derivation and notation have been modified slightly, to conform with earlier papers
in this series and with Southwell 1940, Chap. vir.
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490 R. V. SOUTHWELL AND OTHERS ON RELAXATION

The potential energy of the tension is increased as a consequence of transverse

displacement by an amount
() + ) o

and the kinetic energy is given by (1)

T = —;—ffmiﬂdxdy,

both surface integrals extending to the whole area of the membrane. (7] denotes the
line density of the membrane tension, ¢ its surface density.) Ina ‘normal’ free vibration

w = wsin (pt+e), (ii)

where w is a function of ¥ and y (but not of ¢), p (= 2mn) defines the frequency of
vibration, and ¢ is an arbitrary phase-constant. Then

B = Vsin? (pt+e), T = p?T cos? (pt+e), (iii)
and conservation of energy requires that

VZPQ'T) (2)

I e T dffean

5. When the mode is known (i.e. w as a function of ¥ and y), equation (2) serves to
determine the frequency constant p2. But it is known, further, that for a normal vibration
P? as calculated from (2) is stationary for all variations of the mode, and the governing equation
can be deduced from this circumstance; for we have

DOf

where V=

SV —p2 8T — T.5p% — 0,
ow (9 ow d
p” W oW drdy — TH( W g 3W)dxdy

_ ﬂﬁgaw.ég—:dswﬂff&w.V?wdxdy, (iv)

therefore

V2 having the significance given in (1), and the line integral extending to the whole of
the boundary. Now in all cases that we consider in this paper either w (and therefore
. . aw . .

its variation dw) or —— has to vanish at every point of the boundary: consequently the

on

line integral is zero in (iv), which accordingly requires that
f Sw(op2w -+ T, V2wW) drdy = 0 (v)

for all variations dw, and so yields
T, V2W + op?W = 0 (4)
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METHODS APPLIED TO ENGINEERING PROBLEMS 491

as the governing equation which must be satisfied at every point in the membrane.
In this first section we shall take the boundary condition to be

w = 0. (5)

When the surface density ¢ is uniform, (4) has the form of equation (1). In acoustical
problems the density is usually but not always uniform, and since non-uniformity adds
little to the labour of a relaxation treatment it has seemed worth while to maintain
generality here.

¢ Non-dimensional’ equations

6. Asin all applications of the relaxation method, the first step must be to eliminate
‘dimensional’ factors. Using L to denote some representative dimension of the mem-
brane, we write

x" for x/L, y' fory/L, pftorajo,, Afor o p?L?[T], (6)

where ¢, stands for the density at some specified point. Then (4) reduces to

V2w +pw = 0,
2 2 ¢ 7
simply, where Vi= (%72 + Bj—,z . )

The magnitude of w is immaterial, as in all cases of normal free vibration; all other
quantities which appear in (7) are purely numerical. When ¢ is uniform, p = 1 and
(7) becomes identical in form with (1).

We also require ‘non-dimensional’ forms of (2) and (3). On substitution from (6)

these yield the relation
V' =2.T, }

oo [ e e

Henceforward we shall suppress the dashes in (7) and (8), so x, y, W, V and T are to be regarded
as purely numerical quantities defined by (7) and (8) thus modified.

Principles of the relaxation treatment

7. These will be taken, mutatis mutandis, from §§ 20-5 of Part VII B—with this sim-
plification, that no occasion will arise in the examples treated here for the device of
‘optimal synthesis’ (§23). A membrane, subject to the boundary condition (5), is
unlike the flat plate with its double boundary condition, in that the gravest mode is
invariably characterized by an absence of nodal lines (other than the boundary).
Here we are interested in the gravest mode, which accordingly can be guessed with
fair accuracy; so we need not anticipate ‘regression’ (Part VII B, § 22) to a mode which
is not wanted. The point will be made plain in the examples which follow.

Vor. 239. A 60
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492 R. V. SOUTHWELL AND OTHERS ON RELAXATION

Starting with an assumed form in which W is one-signed throughout, we compute V
and T, and hence deduce a starting estimate of 1, according to (8); then, for this value
of A, we compute residual forces from the finite-difference approximation to

F = V2w pw, (9)

which corresponds with (7) when the dashes are suppressed (§ 6). As in previous papers we
employ the approximation
2
T (V) 2, ()
in which a (purely numerical) stands for the ‘mesh-side’, N for the number of points
which are joined symmetrically with the typical point 0, and 2, y(w) for the sum of the
w-values at these points. (N = 4 for a square, 6 for a triangular net.)

The residual forces are now ‘liquidated’ (partially) with the aid of ‘relaxation
patterns’ deduced from (9) in accordance with the procedure mow become standard
(Part VITA, §17). Then, a new estimate of A is deduced from (8) with our estimate of
w thus improved; further liquidation follows (with patterns corresponding with this
closer estimate of 1) ; and so on until A no longer alters appreciably as the result of this
cycle of operations.

As in Parts 11T and VII, employment of finite-difference approximations means that
a net of finite mesh is substituted for the continuous membrane, and the extent of the
error thereby introduced is left for judgement by intuition (manifestly it decreases
with the size of mesh): correspondingly, the double integrals in (8) are replaced by
double summations based on approximations of the type of ‘Simpson’s rule’. Thereby
we obtain as a convenient parallel to (9)

F =2, (w) +N(4/;—“2— )w. (10)

(We have multiplied (9) by Na?/4, as is legitimate since our aim will be to reduce F
everywhere to zero.)

Example 1. Membrane having a square boundary which is fixed

8. Itis natural to take L, in (6), as the side of the square boundary. We know (cf.,
for example, Rayleigh 1926, § 197) that the gravest value of 1is 272 = 19-73921: con-
sequently we can assess the accuracy of our method by this example, which (on account
of the 8-fold symmetry of the fundamental mode) entails little difficulty, treated on the
basis of square nets.

The computations (by L. F.) were started on a square net of mesh-side a = 1/16,
with an initial assumption which was intentionally made wide of the truth—namely,
displacement varying with position like the height of a symmetrical pyramid having
the square as base. For this assumption equation (8) gave 23-808 as the starting value
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of 4; but three cycles of liquidation, performed in the manner of § 7, brought the value
quickly down to 19-652—the accepted value for this first net. That an underestimate
results from an application of Rayleigh’s principle is due, of course, to the incidental
employment of approximate formulae for double integration. The figure given above
was obtained with a (repeated) use of ‘Simpson’s rule’.

9. As an alternative, the ‘8-strip formula’ given by Bickley (1939) was used with
a result (A = 19-841) which is less near to the truth. This being thought somewhat
surprising, Bickley’s ‘four-strip formula’ was applied to a test case given by Kdrman &
Biot (1940)—namely, the integral

1 dx

L — = 3141 :
g T 314159265

It gave the result 3-14212, whereas Simpson’s rule used with only four divisions in the
range gives 3-14157. (Kdrman & Biot give results to nine significant figures.) Thus
here too a better result is obtained by a use of the simpler formula.

It would seem that the relative accuracy of Simpson’s rule and of more elaborate formulae is a
matter calling for further study. The error of each formula has of course been stated, but
only on the understanding that the wanted function can be identified with a poly-
nomial: the practical question is whether better results will not be obtained by a use
of Simpson’s rule, notwithstanding that in each pair of subdivisions (‘two strips’) it
identifies the wanted function with a quadratic function, because in its application to
computed values i is not bound by conditions of continuity.

10. The computations were continued on a finer net (¢ = 1/32) with results which
are recorded in figure 1. Very little additional labour was entailed, and the finally
accepted value of A (namely, 19-7200) indicates that the procedure suggested in §7
will yield results having amply sufficient accuracy for practical purposes. (The mode
as given in figure 1 is also very accurate.) Simpson’s rule was employed to evaluate
the double integrals. ‘

Example 2. The same problem for a membrane non-uniform in density

11. Figure 1 was used as the starting assumption in an attack (also by L. F.) on the
same problem modified by non-uniformity of the surface den51ty o. The variation was

taken to be glven by
p=0ofoy=1+4xy, (11)

o, relating to the middle point of the square, and x and y having ‘non-dimensional’
significance (§ 6). This expression was chosen as being simple to evaluate at the nodal

points. It vanishes at two of the four corners, but is positive at every point which is

free to move.
60-2
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494 R. V. SOUTHWELL AND OTHERS ON RELAXATION

The corresponding value of 1 was 19-7200 as before—an obvious consequence of the
symmetries possessed by ¢ and by the assumed mode; but for this value the residual
forces had the sign of the change in density, i.e. of xy. With very little labour, point
relaxation led to the altered mode of figure 2 (in which fine lines give, for comparison,

S—— \Q
ok < 582 192 0
[ —
\\,\egoo \ 846 569 286 1]

Op 110 16 750 377 )
Ua N
o~ 2228 1810 1374 3 464, 0
— |

S095N\ 2625 2i33 1619 1088 547 2]

30
_ ] W \ \ \
I \ 4033 3532 299! 2435 1448 1242 624 0

i ()
o SO08N, 4495 3 F3dl 713 2059 1384 695 0

(o) 59 5473 49) 4303 3651 296 2250] 1512 60 I3
o
| -~ 9 6433 3 5282 4627 392 3189 2420 627 ) °

-

| ouoo \f \ Xz
7782 7338 _Xn\s 6242 5601 49 4164 3381 2566/ 175 8 0
oh- 8538 8151 7686 7147 6538 58%6 5137 4361 354/ 2487 18047 904 0
Y \
9159 % 8442 796, 7401 \770 €074 5320 4516 3pe7 2783 187)) 940 0
9620 9387 9063 8652 8158 7584 693\A 6225 \ 5@ \525 3768 2882 1917 963 o
9904 9761 9524 /96 8779 8277 7695 7039 6316 \ 5532 4496 3813 289 1945 978 [
¢ 10000 9952 9808 9570 9240 p\z/ 8317) 132 1073 6346 _ lsssal 479 3842 2904 1955] 983l ___o©
Ficure 1

contours from figure 1). As was to be expected, the denser parts of the membrane
deflect more, the lighter parts less than before. The finally accepted value of A was
19-5661, and it seems safe to conclude (on the basis of our result for Example 1) that
the true value lies between 19-54 and 19-60 (it was to be expected that the value would
be lower in this example). For practical purposes this is more than sufficient accuracy.
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=

—

O H

= II. TwoO-DIMENSIONAL ELECTROMAGNETIC OSCILLATIONS
E O WHICH ARE GOVERNED BY AN ANALOGOUS EQUATION
~w The governing equations

12. In this section it will be shown that some practically important types of electro-
magnetic oscillation (our example has some interest in relation to the design of electron
tubes) are governed by an equation having the form of (1), therefore can be investigated
(with an accuracy sufficient for normal requirements) by the technique of the preceding
section.
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496 R. V. SOUTHWELL AND OTHERS ON RELAXATION

In free space, the components H,, H,, H, of the magnetic field strength / and the
components £, E,, E, of the electric field strength £ are related by Maxwell’s equations

¥y Tz

d - 0H, ﬁHy 0H, J0H, 0Hy 0H,
em(Ex,Ey,Ez) = (7?‘—*3;>a (g;*w): (—a; oy ),l ”
? 0E, 0E) (0E, 0E, (E, OE, J
and —Iua}(]{mHya[{z) —<ay —E)> (?‘Z’“W)a (“a;—ay))

in which ¢ and g denote respectively the dielectric constant and the permeability.*
When everything is invariant with respect to z, the first three of these equations sim-
plify to

J JH, 0H, (0H, 0H,
STTIORC N L R
and the last three simplify to
d IE, oE, (0E, OF,
“ﬂg‘t(flme[{z) :‘37> TR (W_@) (14)

We may distinguish (and superpose in any proportions) two particular solutions of
(13) and (14): an ‘electric’ type of oscillation, or ‘E~wave’, in which , = 0; and a
‘magnetic’ type of oscillation, or ‘ H-wave’, in which £, = 0. In the (two-dimensional)

¢ E-wave’
d . 0H, 0H,
BBy =0 el =5y 2y >

J IE E (15)
and —ng M) =5, =55
in the ‘H-wave’ H =H, =0, —ﬂ(%fé:%%_%j‘f,
Y
(16)
d iH, 0H,
and GE(E;C, Ey) == a—y‘, —‘g*x“.
Eliminating H,, H, from (15), we have
, -
6,u(%§Ez = V2E,, (17)
and eliminating £, £, from (16), we have
2
oy H, = VI, (18)

so that on the assumption that £, or [, oc sin (pt+¢), we have
[eup®+ V] E, = 0, (19)
replacing (17), and an exactly similar equation in A,.

* On this notation cf. Llewellyn 1941, Chap. 1.
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E, cos (x,v) — E,sin (x,v) = 0,

[cos (x,v) %—t—sin (x,v) %:I H — l?gz _ o,

i.e. the normal gradient of H, must vanish at the boundary.

Examples 3 and 4. Resonator system of a Klystron tube

METHODS APPLIED TO ENGINEERING PROBLEMS 497
Again, [ denoting the ‘wave-length’ of the oscillation, we have
p = 2mc/l, (20)
where ¢ denotes the velocity of light; also
eu = 1/c2. (21)
) Hence we obtain, finally, equations of the form of (1), viz.

< (V2] (E,, H,) = 0,
< - where, in this electromagnetic application, (22)
o Lt
2 a
= 0O . . .
T O 13. The boundary conditions, on the other hand, differ for the two kinds of wave
w as occurring in a cylindrical conductor with axis directed along Oz. On the con-

ducting surface the electric field-strength can have no gradient,* therefore E, must
vanish and the boundary condition for the ‘ E-wave’ is of the kind which we considered
in our acoustical Section I. But in the ‘ H-wave’ the same requirement demands that

v denoting the normal to the conducting surface; and hence, according to (16), we have

(23)

14. We now consider natural modes and frequencies for a conducting tube having
the cross-section indicated in figure 3—an example typifying the resonator system of a

)

surface loss.

OF

* The conductivity, as is usual, is treated as infinite.

‘Klystron tube’. In the actual tube, an electron beam passes in the direction of the
arrow, and electromagnetic oscillations are excited in the resonator (or may be taken
out of it) with the help of the coupling loop (C. L.). There are several design problems
which solutions such as follow can help to solve,—e.g. gap position, gap width (d) or
distance (¢) for maximum efficiency. For design it is important to know the position
of the current nodes in the internal surface, also how big the coupling loop must be
made, and where placed, to embrace a maximum amount of flux with minimum

Obviously energy can be given up or taken out by an electron beam only if an electric
field is built up in the direction of the axis marked by an arrow, and this consideration
focuses practical interest on the ‘H-wave’. Since an electric field E, is required, the
x-axis must be a nodal line for /,. Our main concern is to know the lowest frequency
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of oscillation under these conditions. We neglect the space charge and the magnetic
screening effect of the electron beam itself.

15. Interest thus attaches by analogy to the modes of free vibration, having a nodal
line along Ox, of a membrane bounded by the surface ABCDEF in figure 3, and subject
at that surface to the boundary condition

ow

The system of course is capable of vibration in an indefinite number of different modes,
and practical considerations will indicate which are of special interest. Usually interest
centres in the gravest mode of the type described. Figure 4 presents the relaxation
solution of this problem (example 3), performed by D. N. de G. A.

1000 1000 1000 1000 1000 1000 1000 1000
979 979 979 979 979 979 979 979
98 918 918 918 918 918 918 918
82/ 821 821 821 821 82/ 82/ 82/
800
K 692 692 692 692 692 692 689} 0 o
600
540 540 540 540 540/ 538 533 528l 7 o
400
370 rezio4 Por(vs 370 263 351 3334 2/ 0
188 188 188 188 | 200 154 (g5 7| a4l N o
/
/’
- "
_Lso _---
é 0 0 0 0 0 0 0 0 0
Fi1GURE 5

16. On account of the symmetry about Oy in figure 3 it was evident that the modes
would fall into two classes, the first symmetrical and the second antisymmetical about
this line. Example 3 relates to the gravest mode of the first class: a similar computation
for the gravest mode of the second class (example 4) was undertaken by H. M. with
results which are presented in figure 5.
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There is little in the two solutions that calls for notice from a computational stand-
point, and discussion of electrical aspects is reserved. All contours meet the conducting
surface orthogonally, in virtue of the condition (24). The values 0-6190 in example 3,
2-582 in example 4, were obtained for AL?, A being defined as in (22), and L having the
significance shown in figure 3.

We acknowledge with gratitude help received from Miss G. Vaisey, in the con-
struction of contours, and from Mr F. S. Shaw, in the preparation of diagrams for
reproduction.
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